Advanced Design and Analysis Techniques

Part 1

15.1 and 15.2
Note for the students:

- These slides are meant for the lecturers to conduct lectures only. It is **NOT** suitable to be used as a study material.
- Students are expected to study by reading the textbook for this course:
Techniques -1

• This part covers three important techniques for the design and analysis of efficient algorithms:
 – dynamic programming (Chapter 15),
 – greedy algorithms (Chapter 16), and
 – amortized analysis (Chapter 17).
Techniques - 2

• Earlier parts have presented other widely applicable techniques, such as
 – divide-and-conquer,
 – randomization, and
 – the solution of recurrences.
Dynamic programming

• Dynamic programming typically applies to optimization problems in which a set of choices must be made in order to arrive at an optimal solution.

• Dynamic programming is effective when a given subproblem may arise from more than one partial set of choices; the key technique is to store the solution to each such subproblem in case it should reappear.
Greedy algorithms

• Like dynamic-programming algorithms, greedy algorithms typically apply to optimization problems in which a set of choices must be made in order to arrive at an optimal solution. The idea of a greedy algorithm is to make each choice in a locally optimal manner.
Dynamic programming

- **Dynamic programming**, like the divide-and-conquer method, solves problems by combining the solutions to subproblems.

- **Divide and conquer algorithms** partition the problem into independent subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
Dynamic programming -2

- **Dynamic programming** is applicable when the subproblems are not independent, that is, when subproblems share subsubproblems.

- A dynamic-programming algorithm solves every subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time the subsubproblem is encountered.
Dynamic programming -2

• Dynamic programming is typically applied to *optimization problems*. In such problems there can be many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution *an* optimal solution to the problem, as opposed to *the* optimal solution, since there may be several solutions that achieve the optimal value.
The development of a dynamic-programming algorithm

• The development of a dynamic-programming algorithm can be broken into a sequence of four steps.

 1. Characterize the structure of an optimal solution.

 2. Recursively define the value of an optimal solution.

 3. Compute the value of an optimal solution in a bottom-up fashion.

 4. Construct an optimal solution from computed information.
Assembly-line scheduling
Step 1: The structure of the fastest way through the factory

![Diagram of the factory structure]

(a) Graphical representation of the factory's stations and assembly lines.

(b) Tables showing the distances and optimal values:

<table>
<thead>
<tr>
<th></th>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_1[j]$</td>
<td></td>
<td>9</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>$f_2[j]$</td>
<td></td>
<td>12</td>
<td>16</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>37</td>
</tr>
</tbody>
</table>

$f^* = 38$

<table>
<thead>
<tr>
<th></th>
<th>j</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_1[j]$</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$I_2[j]$</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

$r^* = 1$
Step 2: A recursive solution

\[f_1[1] = e_1 + a_{1,1} , \quad (15.2) \]
\[f_2[1] = e_2 + a_{2,1} . \quad (15.3) \]

\[f_1[j] = \min(f_1[j - 1] + a_{1,j}, f_2[j - 1] + t_{2,j-1} + a_{1,j}) \quad (15.4) \]

for \(j = 2, 3, \ldots, n \). Symmetrically, we have

\[f_2[j] = \min(f_2[j - 1] + a_{2,j}, f_1[j - 1] + t_{1,j-1} + a_{2,j}) \quad (15.5) \]
Step 3: Computing the fastest times

FASTEST-WAY \((a, t, e, x, n)\)

1. \(f_1[1] \leftarrow e_1 + a_{1,1}\)
2. \(f_2[1] \leftarrow e_2 + a_{2,1}\)
3. for \(j \leftarrow 2\) to \(n\)
4. do if \(f_1[j - 1] + a_{1,j} \leq f_2[j - 1] + t_{2,j-1} + a_{1,j}\)
5. then \(f_1[j] \leftarrow f_1[j - 1] + a_{1,j}\)
6. \(l_1[j] \leftarrow 1\)
7. else \(f_1[j] \leftarrow f_2[j - 1] + t_{2,j-1} + a_{1,j}\)
8. \(l_1[j] \leftarrow 2\)
9. if \(f_2[j - 1] + a_{2,j} \leq f_1[j - 1] + t_{1,j-1} + a_{2,j}\)
10. then \(f_2[j] \leftarrow f_2[j - 1] + a_{2,j}\)
11. \(l_2[j] \leftarrow 2\)
12. else \(f_2[j] \leftarrow f_1[j - 1] + t_{1,j-1} + a_{2,j}\)
13. \(l_2[j] \leftarrow 1\)
14. if \(f_1[n] + x_1 \leq f_2[n] + x_2\)
15. then \(f^* = f_1[n] + x_1\)
16. \(l^* = 1\)
17. else \(f^* = f_2[n] + x_2\)
18. \(l^* = 2\)
Step 4: Constructing the fastest way through the factory

PRINT-STATIONS(l, n)

1. $i \leftarrow l^*$
2. print “line ” i “, station ” n
3. for $j \leftarrow n$ downto 2
 4. do $i \leftarrow l[i][j]$
 5. print “line ” i “, station ” $j - 1$

In the example of Figure 15.2, PRINT-STATIONS would produce the output

line 1, station 6
line 2, station 5
line 2, station 4
line 1, station 3
line 2, station 2
line 1, station 1
Matrix-chain multiplication

We can multiply two matrices A and B only if they are **compatible**: the number of columns of A must equal the number of rows of B. If A is a $p \times q$ matrix and B is a $q \times r$ matrix, the resulting matrix C is a $p \times r$ matrix.
Counting the number of parenthesizations

\[P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{if } n \geq 2. \end{cases} \]

(15.11)
• Step 1: The structure of an optimal parenthesization
• Step 2: A recursive solution
• Step 3: Computing the optimal costs
Step 3: Computing the optimal costs

MATRIX-CHAIN-ORDER (p)
1 n ← length[p] − 1
2 for i ← 1 to n
3 do m[i, i] ← 0
4 for l ← 2 to n ▷ l is the chain length.
5 do for i ← 1 to n − l + 1
6 do j ← i + l − 1
7 m[i, j] ← ∞
8 for k ← i to j − 1
9 do q ← m[i, k] + m[k + 1, j] + p_{i−1}p_kp_j
10 if q < m[i, j]
11 then m[i, j] ← q
12 s[i, j] ← k
13 return m and s
Figure 15.3 The \(m \) and \(s \) tables computed by \textsc{Matrix-Chain-Order} for \(n = 6 \) and the following matrix dimensions:

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(30 \times 35)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(35 \times 15)</td>
</tr>
<tr>
<td>(A_3)</td>
<td>(15 \times 5)</td>
</tr>
<tr>
<td>(A_4)</td>
<td>(5 \times 10)</td>
</tr>
<tr>
<td>(A_5)</td>
<td>(10 \times 20)</td>
</tr>
<tr>
<td>(A_6)</td>
<td>(20 \times 25)</td>
</tr>
</tbody>
</table>

The tables are rotated so that the main diagonal runs horizontally. Only the main diagonal and upper triangle are used in the \(m \) table, and only the upper triangle is used in the \(s \) table. The minimum number of scalar multiplications to multiply the 6 matrices is \(m[1, 6] = 15,125 \). Of the darker entries, the pairs that have the same shading are taken together in line 9 when computing

\[
m[2, 5] = \min \left\{ m[2, 2] + m[3, 5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 = 13000, \right.
\]
\[
m[2, 3] + m[4, 5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \)
\[
m[2, 4] + m[5, 5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 = 11375
\]

= 7125.
Step 4: Constructing an optimal solution

```
PRINT-OPTIMAL-PARENS(s, i, j)
1   if i = j
2     then print “A”;
3   else print “(";
4     PRINT-OPTIMAL-PARENS(s, i, s[i, j])
5     PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)
6     print “)"
```